FLOMEKO 2019

Development of an optical measurement method for "sampled" micro-volumes and nano-flow rates

Florestan OGHEARD, LNE-CETIAT (France) Abir W. BOUDAOUD, Sorbonne Université (France) Philippe CASSETTE, LNHB (France)

E-mail (corresponding author): florestan.ogheard@cetiat.fr

Outlook

- Background
- Needs
- Description of the system
- Description of sampling and measurement process
- Experimental results, uncertainty components
- Future developments

Background

>Nuclear Medicine \rightarrow Scintigraphy \rightarrow P.E.T.

- Use of short-lived β^+ radionuclides:
 - ${}^{18}F(T_{1/2} = 109,728(18) \text{ min})$
 - ¹⁵O (T_{1/2} = 2,041(6) min)
- Currently the measurement of activity is done on site with ionization chambers ... which must be calibrated (U = 5 to 15 %)
- For shortest periods there is currently no traceability to national standards
- Need for development of a primary measuring device for *in situ* measurements

Needs

> Measurement uncertainty depends on:

- Uncertainty on the measured **volume** (quantity of solution)
- Uncertainty on the measurement **duration** (activity decreasing between sampling and measurement)
- Uncertainty on the **detection efficiency** (relation between counting rate and activity)

 \succ Measured volume and sampling duration have to be traceable to national standards.

> Target uncertainty (k=2) < 2 %

> In order to measure **high activity liquids** :

- Measured volume needs to be as low as possible (below 1 μL)
- Global detection efficiency has to be low
- Detection system has to handle high counting rate
- > The system must withstand irradiation and wetted elements must be replaceable
- Some of these needs are contradictory (eg low yield but low uncertainty), it will requires a system optimization

Research Projet

> To develop a radiopharmaceutical primary calibrator prototype

- LNHB (French DI for ionizing radiations) to develop the activity measurement system
- LNE-CETIAT (French DI for liquid flow and micro-flow) to develop the sampling and volume measurement system
- > National funding (LNE-DRST), 3 years project (2017-2020)
- > Traceability to activity, length and time standards
- Validated by comparison to existing primary standards (gravimetry & IR standards)

CETIAT's liquid micro-flow standard

Gravimetric method
1 g.h⁻¹ to 10 kg.h⁻¹
0.2 barg to 10 barg
10 °C to 50 °C

FLOMEKO 2019 - ORAL SESSION S7.10 Microflow

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μg
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white backlight
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μI syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μ g
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μI syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μ g
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μI syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μ g
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μI syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μg
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μl syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 µg
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μI syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μ g
- **F**: Dinolite **USB camera** focused on liquid level in the vial
- G: 25x25 mm white backlight
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μl syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μ g
- F: Dinolite USB camera focused on liquid level in the vial
 - G: 25x25 mm white backlight
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μl syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μg
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white backlight
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μl syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μg
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μI syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μg
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- J: ILS 100 µl syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μg
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- J: ILS 100 µl syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μ g
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- J: ILS 100 µl syringe
- K: Cetoni 3-way valve
- L: stainless steel **pipe** 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

- A: Mako G507B camera, Optem 70XL zoom, piloted by R&DVision HIRIS software, dedicated image processing script
- B: Zaber (x & z axis, horizontal plan) translation stage used to center the capillary in the image
- C: Hilgenberg 0620 fused silica (quartz glass) capillary, length 15 cm, inner diameter 1 mm, outer diameter 1.2 mm
- D: vial of radiopharmaceutical solution
- E: Sartorius weighing scale used for the validation, measurement range 20 g, resolution 1 μ g
- F: Dinolite USB camera focused on liquid level in the vial
- G: 25x25 mm white **backlight**
- H: Zaber (y axis) translation stage to move the capillary up and down
- I: Cetoni Nemesys syringe pump
- + J: ILS 100 μl syringe
- K: Cetoni 3-way valve
- L: stainless steel pipe 2 mm, insulated
- M: activity measurement system developed by LNHB, not described in this paper.

Traceability: calibration of the camera (pixel size)

Microvolume sampling (+gravimetric comparison)

Microvolume sampling (+gravimetric comparison)

Immersion of capillary

Sampling

Rising of capillary

Imaging of the micro-volume (1 µl)

Measurement of the micro-volume

Step	Description	Input	Output				
Edge detection	Oriented gradient calculation to detect horizontal borders		<u></u>	Vertical edges detection	Scan through image height to find left and right edges		• / •
Lines extraction	sharpening and detection hough line			Internal edges detection	Scan through image height to find left and right edges		• • • •
External edges extraction Spatial calibration	external drop edges detection Minimum distance between borders calculation Zoom factor calculation relative to external diameter		External edges fitting	Linear fit on edges and minimum distance between lines calculation			
				Meniscus height detection	Circular fit of internal points Finding maximum distance between edges and cirles Calculation of local radius		
				Volumes calculation	Raw volume calculation : Vb = π*r ² *D Spherical edges calculation Vcn = 1/6*π*Hn*(3An ² +Hn ²) Corrected volume calculation Vc = Vb - Vc1 - Vc2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Valend (sardige): Ober et

Results: comparison optical vs gravimetric methods

Capillary inner diameter	Mean corrected volume	Error optical vs gravimetric	Repeatability	
1 mm	930 µl	0.2 %	0.3 %	
0.5 mm	199 µl	0.4 %	0.5 %	

Uncertainty components: optical distortions

> Difference in refractive indexes: menisci diameter distortion

Uncertainty components: inner diameter measurement

> Light conditions influence inner diameter contrast

Distance from the light source increases from left to right

FLOMEKO 2019 - ORAL SESSION S7.10 Microflow

Uncertainty components: inner diameter measurement

> Inner diameter measurement from intensity profile

Uncertainty components: menisci volumes

Light conditions influence menisci edges detection

Poor light condition causes wrong menisci edges detection

FLOMEKO 2019 - ORAL SESSION S7.10 Microflow

Uncertainty components: evaporation

Microvolume's evaporation in the capillary between sampling and photograph, can be corrected

Uncertainty components: Landau-Levich film

When the volume is translated inside the capillary, and when the capillary is withdrawn from the vial, a « Landau-Levich » film of liquid of thickness h₀ can adhere to the inner and outer surface of the capillary

- Theory: thickness depends on sampling speed, surface tension and liquid viscosity
- Experiments show that in our case the film thickness is smaller than the imaging system resolution (< 1µm)</p>

\rightarrow V_{film}< 0.2 % of a 1 μl sampled volume translated at 1 mm from the capillary end

Future developments: nano-flow rates measurements

Based on the same system, just measure menisci position:

$$\boldsymbol{Q}_{\boldsymbol{v}} = \frac{\boldsymbol{\pi}.\boldsymbol{r}^2.\Delta\boldsymbol{x}}{\Delta \boldsymbol{t}}$$

- Choose capillary diameter adequately given the flow rate range to be measured
- Compromise between capillary diameter (bigger uncertainty for smaller diameter) and flow speed/rate (distance and time interval between two successive pictures) and evaporation rate given capillary diameter

Future developments: nano-flow rates measurements

- \succ First tests at LNE-CETIAT from 1 g.h⁻¹ down to 1 nl.h⁻¹
- > Results to be published next year, in the scope of JRP MeDD2

Pictures of 1 nl volume in a capillary, using CETIAT's system:

Conclusion

- Optical prototype system for calibration of radiopharmaceuticals sampled microvolumes
- Validated against gravimetric method, for 1 µl to 200 nl sampled volumes
- > Uncertainty components evaluated experimentally, combination expected to be within U = 1 % (k=2)
- Extension to nano-flow rates measurement using the same system, in 2020 in the scope of EURAMET EMPIR JRP « Metrology for Drug Delivery II »

Domaine scientifique de la Doua 25 avenue des Arts – BP 52042 69603 VILLEURBANNE CEDEX - FRANCE

Mail : isabelle.care@cetiat.fr

www.cetiat.fr